3 Steps For A Smooth Transition To Digital Transformation

Written by Jeremy Friedmar

 

It’s time to move from big data to smart data in manufacturing. How can your plant prepare? By following these three steps for digital transformation.

It’s time to shift from “big data” to “smart data.” Plants are no longer concerned about collecting information—most are knee-deep in it. Instead, they’re now questioning how to get more value from their data, whether it’s used to improve processes, reduce costs or optimize equipment efficiency.

 

But many manufacturers can’t extract valuable insights from their data because they’re still trying to figure out how to manage the sheer volume of information generated at every step in the production process, from production to quality control.

 

How can you move from overwhelm to action? By following these three steps for digital transformation.

Step 1: Develop a Solid Network Infrastructure

To support the transmission of data from point A to point B, you need to build a solid network infrastructure that can support increasing numbers of devices.

 

What characteristics make a network up to the challenge?

  • High bandwidth. Bandwidth sets the limit for how much data can flow through the network. With the number of connected devices growing every day, the result is more traffic. An increase in traffic means that more bandwidth is required.
  • Low latency. Managing latency is essential for processes that require determinism (consider robotic arms, for example). Low levels of latency help ensure that a specific action executes reliably and consistently, so you always know exactly when it will occur (in the case of a robotic arm, this means knowing when the arm will perform an expected movement).
  • Security. To protect critical processes, networks must incorporate tools and best practices that prevent and detect cybersecurity issues, such as unauthorized access, tampering or disruption.
  • Remote management. By providing remote access to the network, workers can monitor and control network activity and devices from anywhere to minimize downtime and optimize performance.

 

All these factors work together to improve uptime and keep mission-critical networks running. This minimizes disruption, maintains revenue and reduces waste.

Step 2: Make Sure Your Network Can Support Data Contextualization

Through sensors and automation systems, industrial environments are producing copious amounts of data. In order to do anything with this data, however, your network must be able to support the deployment of software that can process and contextualize it. This will help you quickly digest complex datasets to uncover patterns, establish benchmarks and predict future trends.

 

These resources can be deployed at the edge, in the cloud or both (a hybrid approach). How do you know which is right for you?

  • Edge computing helps you maintain control over your data and reduces latency by decreasing the physical distance between data sources and destinations. Some companies also choose this option for security reasons (to eliminate internet connectivity).
  • Cloud computing removes the burden of having to develop your own infrastructure for data storage and management. It also helps you easily access and manage data remotely.
  • Hybrid offers a mix of both so your plant can reap the benefits of edge computing and cloud computing while using the most effective resource for each workload.

Step 3: Follow Established Best Practices

Following best practices can help you overcome the challenges you’ll confront along your digital transformation journey. Consider interoperability among automation products, for example: Guidance is available from organizations like the NAMUR User Association of Automation Technology in Process Industries.

 

The manufacturers and integrators you partner with can always step in to provide help in this area as well, sharing what they know and have learned through their years of hands-on work.

Make Digital Transformation Your Competitive Advantage

Belden is here to offer the right guidance and help you take the right steps so you reap the benefits of innovation as you embark on your digital transformation journey.

 

Manufacturers that are efficiently digitalized will have a clear competitive advantage: They’ll be able to use data to drive differentiators like predictive maintenance, operational visibility and faster troubleshooting and diagnosis.

 

Our Customer Innovation Center experts can help you design, develop and validate solid network solutions tailored to the complexity of your unique business needs so you can unleash the power of your OT data.

 

Find the original article here

Power Up: Utilities Must Get Ready To Meet Rising Energy Demand

 

Written by Guilhermme Lisboa and Aman Sheth

 

Recent U.S. energy demand has remained stagnant—until now. Find out how power transmission and distribution companies should prepare for the surge ahead.

Over the past few decades, U.S. energy demand has remained stagnant. Upcoming decades, however, will tell a much different story.

 

In fact, the country is already seeing spikes in energy use. In 2023, for example, grid planners virtually doubled their five-year forecast for load growth (from 2.6% to 4.7%). By 2028, they predict peak demand growth of 38 GW—and this growth will continue to trend upward. The U.S. Energy Information Administration estimates that energy demand will rise to 4.112 billion kWh this year and will stretch to 4.123 billion kWh next year.

What’s Driving Higher Energy Demand?

As the economy, businesses and consumers become more electrified, they create new kinds of energy loads. Here are three examples:

Electric Vehicle

Electric vehicles (EVs) are on the move—literally and figuratively. As more EVs hit the road, they’re also making energy mobile, consuming energy from different places on the grid at different times, depending on when and where they charge. This requires dynamic, real-time control over the grid so electrons can be pushed to wherever they’re needed.

Data Centers

As data centers handle new demands ranging from artificial intelligence (AI) to virtual reality (VR), they play an increasingly critical role in our digital world—and they consume more power. According to commercial real estate advisor Newmark, U.S. data center power consumption will reach 35 GW by 2030, which is almost double the energy they consumed in 2022. As the world becomes more tech-forward, data center deployment will continue.

Industrial Processes

With record investments in U.S. manufacturing supported by key legislation like the Infrastructure Investment and Jobs Act (IIJA), the Creating Helpful Incentives to Produce Semiconductors (CHIPS) and Science Act and the Inflation Reduction Act (IRA), the industry is experiencing significant momentum. And many manufacturing and industrial processes require heat—which will require more energy.

 

What This All Means for Power Transmission and Distribution Companies

The time to prepare for more energy demand is now. Grid infrastructure must be ready to support double-digit load increases in relatively short order, which requires rapid planning for and construction of new power generation and transmission systems.

More Power Generation

As energy demand increases, more power generation will be needed. Because energy transition is moving consumers away from fossil fuels and toward sustainable energy, much of this power generation may happen by adding more wind farms, solar farms and other types of renewable energy sources. Traditional power plants, such as gas-fired plants, will also be needed.

More Transmission Lines

Even more challenging than increasing generation is increasing the country’s number of transmission and distribution lines, which carry energy from where it’s generated to where it’s consumed.

In California, for example, it can take 10 years or longer to build a single high-voltage transmission line. The process involves numerous stakeholders, from landowners who must agree on the line’s route to regulatory bodies that must approve and oversee their construction. Also creating challenges is the grid itself, which is undersized, is many decades old and can’t always support increased power transmission and distribution.

Remember: The grid was designed in and for an earlier era. While it has handled growing energy demands so far, it has a limited capacity to do so in the future. Increasing the flow of electrons on the grid could overload infrastructure and impact voltage and frequency stability.

More Substations

In addition to more lines, power transmission and distribution companies will also need more substations to improve grid resilience, integrate renewable sources of energy, reduce the distance between power generation and consumers and distribute energy loads evenly.

Tomorrow’s substations will need to be intelligent to handle more real-time data—from voltage, flow and current measurements to fault detection, event logging and maintenance records. These digital substations use sensors and this real-time data to support remote monitoring and control, enable digital communication and promote efficient, profitable power supply.

Because they contain their own computers, storage, networking, power, cooling and other infrastructure for given workloads, some even refer to these substations as micro data centers.

More Energy Storage

Energy sources like solar and wind aren’t always predictable. Unlike traditional power plants that generate the same amount of energy at the same times, variables like weather, system orientation and maintenance impact renewable energy generation.

Storage systems act as a warehouse to stock pile energy surpluses that are generated during sunny or windy periods—by consumers’ residential systems as well as utilities’ commercial systems—so it can be released when these resources aren’t as plentiful. This ensures a consistent supply of power and can protect against fluctuations in output or prevent voltage drops and blackouts.

New Job Roles

Remember what we said about digital substations becoming data centers? As this transformation happens, power transmission and distribution teams will need new skills.

A data center environment operates much differently than an operational technology (OT) environment (such as a traditional substation). Utility companies will need IT professionals to oversee software and hardware capabilities in complex substation environments that will include servers and other networking equipment.

In some cases, hiring may be necessary. In other cases, upskilling for existing OT team members can help fill gaps.

It’s Time to Accelerate Digitization

As society progresses and consumes more energy per capita, we all have a responsibility to generate, transmit and distribute energy in a sustainable manner.

Belden enables power transmission and distribution companies to accelerate digitization and outperform industry benchmarks in operational areas like substation automation systems, smart grids and load dispatch centers.

The experts and consultants in our Customer Innovation Centers can help you create a digital roadmap so you can start to prepare now for the surge in energy demand ahead and take advantage of the data being captured by your digital substations to improve operations.

 

Find the original article here

The Time to Build a Foundation for Energy Transition Is Now

Written by Guilhermme Lisboa and Aman Sheth

 

Digitalization can facilitate capabilities that will help power transmission and distribution companies support energy transition.

As the world relies on fossil fuels for energy production and generation, the effects can be far-reaching—from potential property damage to an increase in greenhouse-gas emissions.

The concept of energy transition is changing how people obtain and use energy, moving them away from fossil fuels and toward sustainable energy options.

Countries and U.S. states are moving at their own pace toward energy transition—some faster than others. Within the United States, California, for instance, has an ambitious plan to achieve 100% clean energy by 2045. By 2030, the state plans to source 60% of energy from renewables. Washington State is calling for utilities to phase out coal-fired electricity from state portfolios by 2025 and achieve 100% clean energy by 2045.

While these targets are admirable (and many would argue necessary), they’re also going to be tough to meet in many cases due to the condition and age of power transmission and distribution infrastructure.

The current U.S. grid, for example, is several decades old. It’s also designed to be unidirectional (with power flowing in one direction from the grid to the consumer). But future power demands call for a bidirectional grid (power flowing to the consumer and also back to the grid) to support:

  • Integration of renewable energy systems that allow consumers to infuse excess power generated by their solar and wind systems back into the grid
  • Decentralization that enables energy to be generated closer to where it will be used
  • Increased resilience by allowing stored energy to be tapped for backup power during outages
  • Flexibility for energy flow that moves based on demand (consider electric vehicles, for example)

 

While target dates may seem far away—2030, 2045, etc.—they aren’t as far off as they seem. As power transmission and distribution companies work toward these goals, their efforts are further complicated by increasing energy loads due to factors like:

  • New types of electricity users joining the grid, including electric vehicles and electric heat pumps
  • Electricity consumption from data centers to train and run artificial intelligence
  • Population and economic growth

This all means more transmission and distribution lines, more substations and more communications infrastructure amid this energy transition.

Digitalization: The Energy Transition Enabler

With clean-energy targets in place, power transmission and distribution companies must respond—and the only way they can do so is through digital transformation. According to the latest World Energy Investment report, grid-related investments in digital technologies was expected to reach 19% of total grid investment in 2023.

 

Energy transition requires more sophisticated grids—and refined management and control of these grids. It will also require power transmission and distribution companies to scale quickly.

Consider Brazil as an example of what can happen if your company isn’t prepared. Because of the country’s growth in clean energy and the creation of micro and mini power distributed generation, energy surpluses are being injected back into to Brazil’s grid—but its existing infrastructure isn’t equipped for it, which is causing reliability issues.

That’s where digitalization comes in. It can facilitate new capabilities to support energy transition, such as the three examples below.

1. Enabling Digital Substations

Digital substations replace analog components with digital components (think relays, meters, protection systems, etc.). Digital components are also connected through fiber optic cables.

These substations are almost like micro data centers, with infrastructure that provides power transmission and distribution companies with the capability to capture, utilize and transmit accurate, real-time data.

The digital operations, technologies, methods and processes enabled by digital substations support better visualization for system awareness and resilience. They also give utilities deeper access to their connected digital systems and the opportunity to standardize their data.

2. Supporting Operational Insights

Digital transformation enables power transmission and distribution companies to capture real-time data from their infrastructure (such as through the digital substations we mentioned above) so they can monitor and respond to:

  • Energy demand
  • The mix of energy sources being fed into the grid
  • System uptime
  • Performance issues

The ability to monitor not only operational technology (OT) data, but also data about network performance, will help utilities gain insight into network reliability to gauge problems like congestion or unauthorized access.

3. Enacting Predictive Maintenance

Through devices like sensors, smart meters and SCADA systems, utilities can monitor the condition of their systems and assets to detect operational anomalies, such as abnormal temperature readings or increased vibration.

 

These indicators may be early warning signs of failure. When deviations occur, alerts can automatically be sent to the correct teams so they can prioritize, respond to and address maintenance activities before they escalate to downtime.

 

Find the original article here

IT Security vs. OT Security: What Are The Key Differences?

When most people think about cybersecurity, IT security comes to mind—but OT security is also crucial to protect digital assets and critical infrastructure.

As IT-OT convergence continues, bridging the gap between the two technology disciplines is crucial to create a comprehensive cybersecurity strategy that protects digital assets and safeguards critical infrastructure.

OT security and IT security are both essential aspects of this strategy. Let’s explore some of the differences and similarities between the two security approaches.

 

Scope & Focus

IT Security

When most people think about cybersecurity, IT security comes to mind. It protects an organization’s information technology systems—which include networks, servers, computers, devices and business data—from malicious activity, breaches, unauthorized access and other types of cyberattacks.

The goal of IT security is to maintain data integrity while protecting an organization’s sensitive enterprise data, ensuring confidentiality and stopping unauthorized users and devices from gaining access to corporate information.

In IT, critical security threats often include data breaches, intellectual property theft and other security incidents that could lead to financial loss, reputational damage or compliance issues.

 

OT Security

As opposed to securing enterprise systems, OT security secures industrial control systems, such as supervisory control and data acquisition (SCADA) systems. It also protects the physical processes and machinery that support a plant.

The goal of OT security is to prevent cyber-related issues that can cause operational disruptions. Unplanned downtime in an industrial environment can lead to lost production, missed delivery deadlines and inefficient use of staff resources.

It also aims to prevent the compromise of safety and control systems, as well as the disruption of essential services (think water, gas and electricity) or critical infrastructure, by guarding against breaches or attacks that can create safety hazards, equipment damage, physical harm or environmental risks. These can occur when cyberattacks manipulate settings or processes, tamper with systems or cause equipment malfunction.

 

Technology and Environment

IT Security

An IT environment is usually made up of general-purpose computing devices, such as laptops, desktops, printers, servers, cloud infrastructure, mobile devices and web applications. They can be found in almost any office.

As technology and needs change, the lifecycle of these devices tends to be short. They’re often updated or replaced every few years as they become outdated, less efficient or more vulnerable to security risks. As off-the-shelf devices, they usually run on common operating systems and are straightforward to replace.

IT security helps support use of these devices and systems for safe collaboration and file-sharing, internal and external communication and outreach, accounting and financial processes.

 

OT Security

An OT environment involves specialized devices like sensors, programmable logic controllers (PLCs), distributed control systems (DCSs) and industrial machinery. Instead of being housed in offices, these rugged devices can be found right on the plant floor as they support productivity, monitoring and control.

The lifecycle of OT systems tends to be longer than the lifecycle of IT devices and systems. OT systems may be purpose-built for specific applications or environments, running on specialized software and proprietary protocols. As a result, they’re not upgraded or replaced as often as IT equipment.

Real-time operations are critical in OT environments to make sure a plant can facilitate smooth processes, adjust to changing conditions and detect anomalies or hazardous conditions—all while keeping legacy systems and proprietary protocols in mind.

 

Risk Tolerance

IT Security

IT tends to be more dynamic and faster to respond to immediate threats through regular patching, software updates and vulnerability management. These are common IT practices to reduce the risk of cyberattacks.

 

Because IT environments typically include several similar types of devices, the same patch or upgrade can often be rolled out to many machines at once. They can also be scheduled during periods of office downtime to minimize productivity impacts.

 

OT Security

On the plant floor, safety and reliability are front and center. Anything that could potentially impact operations is approached slowly and carefully. The steps often taken in IT to reduce threats, such as immediate patching and running updates, aren’t as accelerated for OT due to constraints like specialized hardware, legacy systems and long lifecycles.

Scheduling downtime to install patches or updates can disrupt critical processes that may negatively impact production and safety. Because OT prioritizes production and physical safety, some vulnerabilities may remain unpatched for extended periods of time as teams assess complexity, compatibility and possible consequences.

 

Regulatory Landscape

IT Security

Depending on the business or industry, IT environments are often subject to specific industry standards and regulations covering data protection. Consider Payment Card Industry Data Security Standard (PCI DSS), which governs security practices for handling credit card data, or the Health Insurance Portability and Accountability Act (HIPAA) for patient health information and healthcare settings. Non-compliance can result in fines and penalties.

 

OT Security

Critical industries, such as energy, manufacturing, transportation and utilities, are subject to their own OT security regulations and standards. These compliance requirements often differ from traditional IT security regulations because they prioritize safety, reliability and availability of machinery and processes, with a goal of protecting equipment and infrastructure vs. databases or software.

Frameworks like the NIST Cybersecurity Framework SP 800-82 and IEC 62443 are used in some industries for guidance on things like risk assessment, security controls, incident response and reporting obligations.

 

Skillset and Expertise

IT Security

The professionals who work in IT security require a deep understanding of things like network security, endpoint protection, application security and data security. Because they work closely with data, networks and software, their knowledge lies in addressing traditional cyber threats, such as malware, phishing and unauthorized access.

 

OT Security

OT security professionals require a deep understanding of industrial processes, SCADA systems and ICS protocols. Because they work with physical processes and industrial systems, these professionals must have expertise in securing complex physical systems and mitigating cyber risks to equipment and infrastructure.

 

Helping You Strengthen OT Security

Belden and its brands, including macmon, can help you navigate IT-OT convergence so you can experience the benefits it offers, while reducing the risks it can bring to OT security and systems.

Our broad portfolio of industrial cybersecurity solutions offers visibility to and protection from events that threaten the safety, quality and productivity of control systems.

 

Find the original article here

Written by Patrick Deruytter

Copyright © 2024 Jaycor International
Engineered by: NJIN Agency