Empower your Data Centre Collocation Customers with PatchPro® Web

Real-time Online Access to Hosted Infrastructure

PatchPro® Web application provides a collocation data centre’s clients access to their hosted infrastructure, online through a user-friendly web interface. An amazing tool for empowering DC customers to access and view their network infrastructure, servers and other devices. View free ports and rack units, create patch or cross-connects between devices and send workorders direct to the NOC.

The results:

  • Provide Visibility
  • Improve Efficiency
  • Empower Customers

Web Features

Front (and back) and rear (and back) views provide full visibility of all hosted infrastructure within the rack.

– user level access restricts collocations customers from accessing and viewing other customers infrastructure.

Side rack view provides visibility in ensuring no conflicting space requirements apply, when adding additional hardware components.

Visualize connections in granular detail:

– Connected/open ports (front and back) visually

– All connected devices

– Export to Excel/Visio

Customers manage their infrastructure and connectivity

– Components (Servers, switches, SFP’s)

– Create Connections (Patches & Cross-Connects)

Access unique attributes for all connected devices


Additional Benefits of PatchPro® SaaS

  • SaaS (Software as a service)
    • No capital investment in licensing, hardware, staff and training required to execute
    • Contract based on your scope of work and customized for your requirements and budget
  • Open API

Other Modules (Included)

  • PactchPro® F – Facilities Manager
    • Infrastructure physical Layer management (iPLM)
  • PatchPro®I – Infrastructure Connection Manager
    • Data Centre Infrastructure management (DCIM)
    • Automated Infrastructure Management (AIM)
  • PatchPro® SPM Web
    • Service Plan Manager/Asset Managment

 

Greg Pokroy

CEO – JAYCOR International

Enhance Performance, Productivity and Well-being with Human-Centric PoE LED Lighting

Power over Ethernet (PoE) makes it easier and more cost efficient to power all the “things” that make up Internet of Things and smart buildings. Why? Because, with PoE, powering these devices doesn’t require a power connection and a data connection. Through a single category cable, both power and data can be delivered to a device.

Prior to PoE, these systems may have been able to come together over one IP network for improved control and monitoring, but they still required separate data and electrical connections, as well as proximity to electrical outlets.

Over the past few years, PoE power levels have been increasing – starting at 15W and growing to 30W and 60W. Today, itp’s possible to deliver 100W of power plus data over a single cable. PoE standards are also changing to support higher power levels. IEEE 802.3bt, which is currently under development, calls for 4-pair power delivery to improve efficiency and support complex devices. It also calls for two power variants: Type 3 (60W) and Type 4 (100W).

These higher wattages allow devices like point-of-sale registers, digital signage displays and PTZ surveillance cameras to take advantage of PoE. LED lighting systems can also now connect to the network via a PoE cable.

Connecting LED lighting systems to the network via PoE offers many benefits. Each fixture can utilize a standard RJ45 connector and have its own IP address for individual monitoring and control. Through integrated sensors, LED fixtures transform into smart lighting systems that collect data on occupancy, temperature, daylight, etc. and make changes in lighting levels accordingly.

Who Benefits from PoE LED Lighting?

Although any facility can be a candidate for PoE LED lighting, healthcare facilities are noticing major improvements due to the impact it has on staff productivity and patient care and recovery.

PoE LED lighting offers a human-centric approach to lighting, recognizing that lighting can positively or negatively impact people. Lighting conditions can either disrupt or sync our circadian rhythms, which are physical, mental and behavioral changes that follow a 24-hour cycle. A human-centric approach to lighting means that it can be controlled to enhance performance, productivity and well-being.

In healthcare facilities, for example, fluorescent fixtures can be replaced with PoE LED fixtures that can be dimmed, color tuned and set to specific schedules. This not only improves sleep patterns for patients, decreases falls and reduces disruptive behavior (such as agitation or anger), but also lowers energy costs.

Installation and Deployment Challenges

There are certain challenges to keep in mind when deploying PoE LED lighting. For example, selecting the right option to power your LED lighting through the Ethernet network – either through centralized PoE, distributed/in-ceiling switches or a gateway – is crucial to ensuring that the system functions as expected and offers all promised benefits.

Read full article

JAYCOR – CEO announcement

JAYCOR International (Pty) Ltd is pleased to announce the appointment of Greg Pokroy, age 37, as the Company’s new CEO.

Greg joined JAYCOR in 2002 and began his career in sales, learning the products and business from the ground up. Greg moved to Cape Town in 2005 to begin developing client relationships in the Western and Eastern Cape regions, and later established JAYCOR’s Cape Town branch in 2010.

Over the last decade, Greg has played a strategic role in the growth, development and modernisation of the business, responsible for refining JAYCOR’s technology infrastructure, systems, operational processes and business development. Greg was also pivotal in successfully rebranding the business, launching the innovative smart e-commerce platform and spear-heading the Enterprise division and PatchPro® SaaS service.

The Board is excited to have Greg as CEO and we wish him great success in his new role.

Dual-Power Feeds in Data Centers

Things like always-on technology, streaming content and cloud adoption are creating high demand for efficient, resilient and fast data centers that never let us down.

To meet these needs, dual-power feeds – two independent electrical feeds coming into a data center from the utility company – are becoming more common to reduce the chance of a complete outage (or not having enough power). This type of power set-up is often seen in Tier 4 data centers. If one of the two power sources suffers from an interruption, the other source will still supply power.

Generally labeled “A” and “B” feeds, each power source has not only its own utility feed, but also:

  • A backup generator
  • A switch that alternates between A and B feeds
  • Electrical and distribution switchboards
  • An uninterruptible power supply (UPS)
  • A power distribution unit (PDU)
  • Rack-level PDUs

At any one of these points along the chain, failure can occur. A true dual-power feed means that there are two separate sets of these components operating independently, reducing the likelihood of downtime due to failure.

Today, most mission-critical IT equipment, such as servers and switches, are also designed with at least dual power supplies. When everything is running normally, the equipment pulls power equally from both power feeds. In the event of an outage, however, the IT equipment can automatically switch all power to one feed or the other.

Read full article

Network Upgrades: Utilizing Parallel Fiber Cabling

It comes to no surprise, that enterprise and consumer demands are impacting data centers and networks. As speed requirements go up, layer 0 (the physical media for data transmission) becomes increasingly critical to ensure link quality.

Numerous organizations are looking for an economical, futureproof migration path toward 100G (and beyond). Multimode fiber (MMF) cabling systems continue to be the most popular, futureproof cabling and connectivity solution.

Both duplex and parallel cabling are options for network upgrades. A few weeks ago, we discussed duplex MMF cabling. In this, we’ll discuss parallel MMF cabling.

 

Parallel Fiber Cabling

When transceiver technology can’t keep up with Ethernet speed requirements, the most obvious solution is to move from duplex to parallel fiber cabling.

Although using BiDi (bi-directional) and SWDM (shortwave wavelength division multiplexing) transceivers can reduce direct point-to-point cabling costs, they do not support breakout configuration (e.g. 40G switch ports to four 10G server ports), which is a very common use in data centers.

According to research firm LightCounting, approximately 50% of 40GBASE-SR4 QSFP+ form factors are deployed for breakout configuration; the other 50% are deployed for direct switch-to-switch links.

As a matter of fact, 40G QSFP+ and 100G QSFP28 are the most popular form factors used for Ethernet switches in data centers. QSFP (quad small form-factor) is a bi-directional, hot-pluggable module mainly designed for datacom applications. QSFP+/QSFP28 has a 2.5x data density compared to SFP+/SFP28, using four parallel electrical lanes. The optical interface is a receptacle for MPO female connectors. Four fibers (1, 2, 3 and 4) transmit the signal; the other four fibers (9, 10, 11 and 12) receive the optical signal.

QSFP transceivers, paired with parallel fiber connectivity with a one-row MPO-12 (Base-8 or Base-12) interface, can support flexible breakout or direct connection.

  • 40G/100G direct links are typically used in switch-to-switch links, which can be supported by duplex or parallel fiber cabling.
  • 40G/100G Ethernet ports can be configured as 4x 10G or 4x 25G ports to support 10G/25G server uplinks.
  • 40G/100GBASE-SR4 transceivers only use eight fiber threads in an MPO-12 connector; therefore, Base-8 is a cost-optimized cabling solution that allows 100% fiber utilization.

Read full article

Analyzing Data Center Energy Consumption By Using Business Metrics

About five years ago, the industry first heard about Digital Service Efficiency (DSE) – a method that was designed by eBay to help the company capture a holistic picture of their data center energy consumption and performance.

The initiative was then made public in an effort to assist other organizations establish their own data center energy consumption benchmarks and goals, and compare live system performance against those benchmarks and goals to determine actual efficiency levels.

While they tracking their data center’s power usage effectiveness (PUE), which illustrates how efficient a data center’s electrical and mechanical systems are, they felt like something was missing. Calculating PUE didn’t offer them insight into how efficiently their data center equipment (such as servers) was being used. The DSE initiative was formed to fill this gap.

Earlier this year, the team of eBay engineers who created the DSE initiative received a patent for it. With this news, we thought it would be a good time to revisit the data center productivity metric they introduced a few years ago. Even though it was created based on eBay’s core competency – e-commerce – there are still some lessons to be learned.

In eBay’s case, to measure performance and data center energy consumption, they chose to specifically measure how many online business transactions are completed per kilowatt-hour consumed. They calculated this by analyzing four metrics:

  1. The type of performance they wanted to measure (transactions, or the number of online purchases and sales)
  2. Cost per transaction (they measured cost per megawatt-hour, per user and per server)
  3. Environmental impact (amount of carbon dioxide produced per transaction)
  4. Revenue per transaction (they measured revenue per transaction, per megawatt-hour and per user)

Then they base their data center improvement goals around those metrics – goals like reducing cost per transaction by a certain percentage, for example, or increasing transactions per kilowatt-hour by a certain percentage.

The organization believes that, by substituting your own unique business metric in place of the metric they used – online business transactions – you’ll be able to create your own, unique way of measuring data center productivity and efficiency, too.

What performance metric could you use to measure and benchmark data center energy consumption? Here are a few ideas:

  • Healthcare: number of patients seen or number of appointments set
  • Hospitality: number of guests who stay onsite or number of reservations
  • Manufacturing: number of widgets produced
  • Financial: number of transactions

Read full article

Public vs Private Clouds: How Do You Choose?

An Intel Security survey of 2,000+ IT professionals last year revealed several fascinating information about public and private cloud adoption. For starters, within the next 15 months, 80% of all IT budgets will have some income dedicated to cloud solutions.

Many enterprises are starting to rely on public and private clouds for a few simple reasons:

  • Most good public and private cloud providers regularly and automatically back up data they store so it is recoverable if an incident occurs.
  • Tasks like software upgrades and server equipment maintenance become the responsibility of the cloud provider.
  • Scalability is virtually unlimited; you can grow rapidly to meet business needs, and then scale back just as quickly if that need no longer exists.
  • Upfront costs are lower, since cloud computing eliminates the capital expenses associated with investing in your own space, hardware and software.

But before you decide you are moving to the cloud, you should know the differences between public and private clouds. Making a choice between public and private clouds often depends on the type of data you’re creating, storing and working with.

 

Public Clouds Defined

The public cloud got its kick start by hosting applications online – today, however, it has evolved to include infrastructure, data storage, etc. Most people do not  realise that they have been benefitting from the public cloud for years (before most of us even referred to “public and private clouds”). For example, any time you access your online banking tool or login to your Gmail account, you’re using the public cloud.

In a public cloud, data center infrastructure and physical resources are shared by many different enterprises, but owned and operated by a third-party services provider (the cloud provider). Your company’s data is hosted on the same hardware as the data from other companies. The services and infrastructure are accessible online. This allows you to quickly scale resources up and down to meet demand. As opposed to a private cloud, public cloud infrastructure costs are based on usage. When dealing with the public cloud, the user/customer typically has no control (and very limited visibility) regarding where and how services are hosted.

 

Private Clouds Defined

In a private cloud, infrastructure is either hosted at your own onsite data center or in an environment that that can guarantee 100% privacy (through a multi-tenant data center or a private cloud provider). In these third-party environments, the components of a private cloud (computing, storage and networking hardware, for example) are all dedicated solely to your organization so you can customize them for what you need. In some cases, you’ll even have choices about what type of hardware is used. No other organization’s data will be hosted using the equipment you use.

With an internal private cloud (one hosted at your own data center), your enterprise incurs the capital and operating costs associated with establishing and maintaining it. Many of the benefits listed earlier about choosing cloud services don’t apply to internal private clouds, especially since you serve as your own private cloud provider.

In organizations and industries that require strict security and data privacy, private clouds usually fit the bill because applications can be hosted in an environment where resources aren’t shared with others; this allows higher levels of data security and control as compared to the public cloud.

 

What’s a Hybrid Cloud?

Enterprises also have the opportunity to take advantage of both the public and private cloud by implementing a hybrid cloud, which combines the two.

For example, the public cloud can be used for things like web-based email and calendaring, while the private cloud can be used for sensitive data.

Read full article

Network Cables; How Cable Temperature Impacts Cable Reach

There is nothing more disheartening than making a big investment in something that promises to deliver what you require – only to find out once it is too late that it is not performing according to expectations. What happened? Is the product not adequate? Or is it not being utilised correctly?

Cable Performance Expectations

This scenario holds true with category cable investments as well. A cable that can not fulfil its 100 m channel reach (even though it is marketed as a 100 m cable) can derail network projects, increase costs, cause unplanned downtime and call for lots of troubleshooting (especially if the problem is not obvious right away).

High cable temperatures are sometimes to blame for cables that don’t perform up to the promised 100 m. Cables are rated to transmit data over a certain distance up to a certain temperature. When the cable heats up beyond that point, resistance and insertion loss increase; as a result, the channel reach of the cable often needs to be de-rated in order to perform as needed to transmit data.

Many factors cause cable temperatures to rise:

  • Cables installed above operational network equipment
  • Power being transmitted through bundled cabling
  • Uncontrolled ambient temperatures
  • Using the wrong category cabling for the job
  • Routing of cables near sources of heat

In Power over Ethernet (PoE) cables – which are becoming increasingly popular to support digital buildings and IoT – as power levels increase, so does the current level running through the cable. The amount of heat generated within the cable increases as well. Bundling makes temperatures rise even more; the heat generated by the current passing through the inner cables can’t escape. As temperatures rise, so does cable insertion loss, as pictured below.

Testing the Impacts of Cable Temperature on Reach

To assess this theory, I created a model to test temperature characteristics of different cables. Each cable was placed in an environmental chamber to measure insertion loss with cable temperature change. Data was generated for each cable; changes in insertion loss were recorded as the temperature changed.

The information gathered from these tests was combined with connector and patch cord insertion loss levels in the model below to determine the maximum length that a typical channel could reach while maintaining compliance with channel insertion loss.

This model represents a full 100 m channel with 10 m of patch cords and an initial permanent link length of 90 m. I assumed that the connectors and patch cords were in a controlled environment (at room temperature, and insertion loss is always the same). Permanent links were assumed to be at a higher temperature of 60 degrees C (the same assumption used in ANSI/TIA TSB-184-A, where the ambient temperature is 45 degrees C and temperature rise due to PoE current and cable bundling is 15 degrees C).

Using the data from these tests, I was able to reach the full 100 m length with Belden’s 10GXS, a Category 6A cable. I then modeled Category 6 and Category 5e cables from Belden at that temperature, and wasn’t able to reach the full 100 m. Why? Because the insertion loss of the cable at this temperature exceeded the insertion loss performance requirement.

Read full article

Easy, Cost-Effective Way to Add Power with Industrial PoE Injectors

PoE Injectors can appease the growing power demands of energy-hungry devices in applications like physical security, transportation and automation – all in one device.

  • High-efficiency, low-waste power
  • Plug-and-play installation
  • Up to 240W of power from 8 ports

For recently developed or retrofit applications in need of maximum power without device limitations, these Power over Ethernet (PoE) injectors supply a high port count and up to 240 W of power.

PoE injectors join Hirschmann’s family of products built with industrial-grade housings and specific features to provide reliable power for industrial applications. They are the easiest and most cost-effective way to add high PoE power to both new and existing applications.

Benefits

  • Choose between active (integrated power supply) or passive (standalone module) devices for increased flexibility, depending on your needs.
  • Supports up to 240 W across 8 ports without load sharing, ensuring maximum power output. Each port can provide the maximum output power of 30 W.
  • Simple plug-and-play capability and compact size saves time and space while automatically detecting connected devices.

Features

  • Benefit from up to 8 available ports that deliver 30 W of power each
  • Enable PoE communication with a high number of devices using just one PoE Injector
  • Save costs with an all-in-one-solution and an efficient transfer of power (less wasted power) of >95 percent
  • Use in extreme environmental conditions, including wide temperature ranges (-45 °C to +85 °C for injector, -25 °C to +70 °C for injector plus power supply)
  • Install quickly and easily with automatic device detection and classification (IEEE 802.3at)
  • Meet important industry standards
    – Safety of Industrial Control Equipment: EN 60950-1, EN 61131-2, UL 60950
    – Transportation: EN 50121-4

Download Bulletin

Read full article

10 Factors to consider when Choosing a Rack PDU

In it’s simplicity, rack power distribution units (PDUs) are designed to provide electrical protection and distribute power to networking equipment within racks/cabinets. As the needs and requirements of data centers altar, so do options for rack PDU performance.

There are several questions to consider before selecting rack PDUs that will work well for your data center application. This list below will aid you in the right direction, ensuring that the PDUs you choose will fit the design of your data center today and in the future.

1. Type of Mount

Depending on where you want to station it, a rack PDU can be mounted horizontally or vertically. Installed horizontally inside the rack (taking up RU space) is one option; another option is to vertically mount a PDU on the back or side of the enclosure (not taking up any RU space). You will often see one vertically mounted PDU on the left side and one on the right side of a data center cabinet (although rack PDUs can be mounted on either side, based on preferences).

PDUs can be mounted so that power cords exit either at the bottom or top of the enclosure. (If your data center is on a slab, for example, the power cord needs to exit at the top of the enclosure because there is no raised floor for it to pass through.)

2. Amperage

Your power rating – the amount of sustained power draw a PDU can handle – determines the amperage level you’ll need. Why is this important? Because, for example, a PDU with a 30A fuse will blow if a 30A circuit experiences more than 30A of power for an extended period of time.

Per the National Electrical Code, 30A PDUs or higher are required to be equipped with a 20A breaker to prevent injury in the event of a short circuit.

3. Voltage

In addition to different amperages, there are different input voltage options for rack PDUs as well; 208/240V is the most common voltage output to computing gear, with a new trend moving toward 400V input. Confirm your infrastructure voltage, and you’ll know what type of voltage you need in your PDU.

4. Single- or 3-Phase Power

What type of input power do you have access to: single-phase power or 3-phase power? The type of power distribution in your data center will determine whether you need a single- or 3-phase PDU.

The difference involves where in the distribution system the phase is broken down. When it’s broken down at the distribution panel, power to the rack will be single-phase service (requiring single-phase rack PDUs). When all three phases are brought to each rack, then a 3-phase PDU is needed. In most data centers, the input power is 3-phase service.

Read full article

Copyright © 2024 Jaycor International
Engineered by: NJIN Agency