Additional Wireless Access Points: What It Means for Networks

Ordinarily users will bring up to three devices with them – a smartphone, tablet and laptop, for instance – that will all connect to your network the minute you walks through your doors. (The average U.S. consumer now has 3.64 devices.) These devices are continuously downloading updates, receiving emails and synching to cloud-based storage. According to Dell’Oro, the number of wireless LAN active users is currently outpacing wired LAN users.

This fact alone proves the point that bandwidth capacity requirements are escalating– and we have not touched on the devices that are connecting to enterprise networks as a result of Internet of Things (IoT). VoIP phones, IP surveillance cameras, lighting systems and building controls are all connecting to networks to transfer data, receive data and adjust performance in real time.

Read full article

HDBaseT: Let’s talk Convergence

There has been talk about convergence in the cabling world; some driven by new technology and market overlapping. Today’s system integrator has the ability to install a system that covers phones, computers, security, audio/video and also low-voltage power.

There are two types of convergence that we often discuss: technology and infrastructure.

Technology convergence uses a single network system, such as Ethernet, to support multiple devices. All of these devices share the same cable and active equipment. An example, you can now plug your desk phone and computer into the same telecom switch. Ethernet networks can support just about every aspect of communication, voice, data, security, building control and even AV applications. This is not the convergence we are talking about.   

Infrastructure convergence uses the same cable to support multiple systems. All sorts of devices connect to their own system using a common cabling system. The biggest type of communication cabling being used today is Ethenet category cable. While the entire system shares the same cable, the devices don’t speak the same language; therefore, they cannot communicate with each other. This system offers customers a universal, low cost-cabling system. But is it really the best solution for each application?

This article examines one version of this type of convergence: the use of category cabling for HDBaseT signals.

read full article

Why PoE Demands Cat 6A Cable

Power over Ethernet (PoE) is ideal for supplying a variety of networking, AV and computing devices without the need for an outlet or adapter. It also reduces the amount of building material required to power and connect a device to a network by allowing a single cable to provide both services.

No longer confined solely to VoIP phones and security cameras, powered devices are increasingly calling for PoE connections; and these devices are requiring higher power levels. Wireless access points, digital signage, videoconferencing systems and laptops all require an increasing amount of power running through their cables. In fact, a new PoE standard, IEEE 802.3bt, supports up to 100 W of power per cable.

However, higher power levels running through a cable can cause performance issues by making the cable hotter; and when the cable gets hotter, insertion loss increases. This increases the chance of a business experiencing productivity-draining downtime and may also damage the cable itself.

The type of cabling selected can make a major difference in terms of how heat inside the cable is managed, as well as how it impacts performance. Category 5e and Category 6 cable can be used to support PoE devices, but Category 6A is preferable for a number of reasons.

Read full article

Cost-Effective Short Wavelength Division Multiplexing (SWDM)

Applications Presently Using SWDM

Factoring that fiber infrastructure costs, parallel multimode MPO cabling is largely more costly than LC-duplex fiber patch cords. For direct port-to-port connections, it’s more desirable to use a single fiber pair instead of MPO trunk to keep costs down.

For supporting smooth migration from 10G to 40G Ethernet, Cisco released a proprietary 40G bi-directional (BiDi) transceiver solution that allows reuse of the duplex multimode fiber pair for 40G connection. The BiDi transceiver utilizes two wavelengths (850nm and 900nm) transmitting in the same fiber on opposite directions, with an actual bit rate of 20 Gbps. It supports 40G data transmission up to 150m in OM4 multimode fiber.

Arista’s 40G universal transceiver is another solution that supports LC-duplex fiber pair instead of MPO. The 40GBASE-UNIV supports a reach of 500m singlemode fiber and 150m reach in OM4. Similar solutions are also available from Juniper (40G-LX4) and Finisar (40G-LM4).

In short-reach datacom applications, BiDi and Universal transceiver solutions have proven to be market successes.

New SWDM Applications in WBMMF

Historically, compared to singlemode transceivers, multimode transceivers cost less and are more efficient in power consumption. The introduction of wideband multimode fiber will maintain the appeal of multimode fiber cabling systems for next-generation Ethernet speed implementation with SWDM technology.

Since 40G Ethernet was introduced, QSFP has become the most popular form factor for 40G and 100G Ethernet physical interfaces. Recently, new SWDM-based QSFP multimode transceivers, including 40G-SWDM4, 100G-SWDM4 and 100G-SWDM2, have been demonstrated by a few vendors.

In regard to standardization, the SWDM4 consortium built a consensus that 4-wavelength is a viable solution, and it’s possible to support up to eight wavelengths in the single MMF. In the IEEE 802.3 working group, WBMMF was already taken into consideration for new standards development.

If you opt for SWDM transceivers in your next data center deployment, we recommend taking a close look at OM5 to support desired reach and link performance.

Read full article

What is Layer 0?

Beneath your IT infrastructure lies a foundation: layer 0. It’s the one we often don’t talk about. It’s constantly overlooked but is so critical. Installed behind walls and above the ceiling, behind closed doors and in dark rooms, your cabling – although hidden, and seldom the topic of conversation among IT professionals – is, in my opinion, the most important layer of your information communication technology (ICT) infrastructure.

What is Layer 0?

Basically, layer 0 is made up of your infrastructure cabling and connectivity. It allows data to be reliably transmitted from one place to another at high speeds – whether users/devices are in the same room, in different buildings or separated by thousands of kilometers.

Read full article

Making Ethernet a Viable Option to Control Stage Lighting

Imagine what it would be like attending a concert or a live theater performance without a coordinated light show. How would that impact the experience? With the amazing effects that can be achieved thanks to advancements in lighting over the past decade, it would not be nearly the same.

Years ago, most lighting systems communicated using proprietary serial protocols. This made interoperability between different OEM’s equipment problematic and often impossible. To rectify this situation, the lighting industry got together and agreed that one common standard digital protocol must be created.

The Road to Standardization in Theater and Stage Lighting – DMX512 & DM512-A

DMX512 is a standard for digital communication networks commonly used to control stage lighting and effects; it was originally intended as a standardized method for controlling light dimmers. Developed by the United States Institute for Theatre Technology (USITT) Engineering Commission, the DMX512 standard (for “digital multiplex with 512 pieces of information”) was created in 1986, with subsequent revisions in 1990 leading to USITT DMX512/1990.

DMX512-A – In 1998, the Entertainment Services and Technology Association (ESTA) began a revision process to develop DMX512 as an ANSI standard. The resulting revised standard, known officially as “Entertainment Technology – USITT DMX512-A – Asynchronous Serial Digital Data Transmission Standard for Controlling Lighting Equipment and Accessories,” was approved by the American National Standards Institute (ANSI) in November 2004. It was revised again in 2008, and is the current standard known today as “E1.11 – 2008, USITT DMX512-A” (or just “DMX512-A”).

Ethernet is expanding as a means to communicate control signals that vary the intensity, color, timing and position of elements in theater and stage lighting systems. 

The ways that Ethernet can support theater and stage lighting

  1. The Need for Higher Bandwidth
  2. Why Not Internet Protocol (IP)?
  3. Scalability

Read full article

What we Learned at the Ethernet Alliance’s Technology Exploration Forum

On Sept. 29, 2016, a Technology Exploration Forum (TEF) was hosted by the Ethernet Alliance to research new Ethernet market demands and technological challenges that will make up the next decade.

Belden was invited to share some insight and engage common interests and new challenges in the Ethernet community. The Forum learned some interesting things from industry experts, including research groups such as Dell’Oro and LightCounting, at the Ethernet Alliance Technology Exploration Forum, and wanted to pass them along to you.

  1. The Current Status of Ethernet
  2. More Cost-Effective, System-Level Solutions
  3. The Potential for a Fragmented Market
  4. Multisource Agreements Fill Gaps
  5. Sweet Spots for Fiber

 ethernet-speeds

Read Full Article

 

 

The Evolution of Wireless Standards

In the late 1990’s, one of the first wireless standards was carried out. You may remember IEEE 802.11b – the first wireless LAN standard to be widely adopted and incorporated into computers and laptops. A few years later on came the IEEE 802.11g, which offered signal transmission over relatively short distances at speeds of up to 54 Mbps. Both standards operated in the unlicensed 2.4 GHz frequency range. In 2009, IEEE 802.11n (which operated in 2.4 GHz and 5 GHz frequency ranges) was a big step up. It provided anytime wireless access and was the de facto standard for mobile users.

Understanding wireless technology and standards like these is key to making sure you are investing in technology and equipment that can support your organisation’s short-term and long-term network-connection requirements. Wireless standards layout specific specifications that must be followed when hardware or software are designed related to those standards.

Now that we have covered the major wireless standards of the past, let’s look ahead at current standards – and what is yet to come.

 

 

General-Purpose Applications

Today’s wireless standards, like IEEE 802.11ac (Wave 1 and Wave 2), operate in the 5 GHz frequency range. This standard is used for many general-purpose, short-range, multi-user applications, like connecting end devices to networks.

As we have mentioned in previous blogs, IEEE 802.11ax is the “next big thing” in terms of wireless standards. As the successor to 802.11ac, 802.11ax operates in both the 2.4 GHz and 5 GHz frequency spectrums. It will offer 10G speeds, and the ability for multiple people to use one network simultaneously with fewer connectivity problems (and while still maintaining fast connection speeds). It will improve average throughput per user by a factor of at least four as compared to 802.11ac Wave 1.

 

High-Performance Applications

Operating at an unlicensed frequency of 60 GHz are IEEE 802.11ad and IEEE 802.11ay, which are used primarily for short-range, point-to-point applications vs. point-to-multipoint applications. 802.11ay is an update to 802.11ad, improving throughput and range. As compared to 802.11ad, 802.11ay can offer speeds between 20Gbps and 40Gbps, as well as an improved range.

 

IoT Applications

Operating at lower frequencies are standards like 802.11af (UHF/VHF) and 802.11ah (915 MHz). These standards are designed for extended-range applications, like connecting hundreds of remote Internet of Things (IoT) sensors and devices. They’re also used in rural areas.

Because they operate in lower-frequency ranges, they’re able to offer extended operational ranges. They can carry signals for miles, but have a low throughput of 350 Mbps.

Read full article

Single-Pair Ethernet Cabling: Four New Applications

Four New Types of Single-Pair Ethernet Cabling

For years, Ethernet cabling has used four twisted pairs to carry data without worrying about noise in data lines. Recent developments in IEEE 802.3 (Ethernet Working Group) and TIA TR-42(Telecommunications Cabling Systems Engineering Committee) has unveiled four standards projects which may change that; instead of four balanced twisted-pairs cabling, these standards feature a single balanced twisted-pair Ethernet cabling.

Of these four, one will impact enterprise networks the most. We will cover this standard first, and then explain the three other types of single-pair Ethernet cables below.

IoT 1 Gbps Applications: 100 m Reach

2017 Ericsson Mobility Report says that there will be nearly 28 billion connected devices in place globally by 2021 – and more than half of these will be related to Internet of Things (IoT).

With the ability to deliver data at speeds of up to 1G, and PoE power, this standard is intended specifically for IoT applications. Known as ANSI/TIA-568.5, it will provide cable, connector, cord, link and channel specifications for single-pair connectivity in enterprise networks.

This single-pair Ethernet cable may help network professionals connect more devices to their networks as the industry moves toward digital buildings – where all types of systems and devices integrate directly with the enterprise network to capture and communicate data.

Most of the devices used in digital buildings – such as sensors – have minimal power and bandwidth requirements (in applications like building automation and alarm systems). In these cases, single-pair Ethernet cable can provide a cost-effective cabling solution. The cable is smaller and lighter than a standard four-pair Ethernet cable, so it can also reduce pathway congestion.

The three other single-pair Ethernet cable types don’t apply directly to data centers or enterprise networks, but they’re still important to understand.

Read full article

Supporting Your Future of Network Technology: 6 Ways to Design Layer 0

The year 2014 was a key moment for the structured cabling industry. That is when the number of devices on the Internet officially surpassed the number of people on the Internet. In other words, we’re carrying and using more connected devices than ever before. Since then, Internet of Things (IoT) has begun to take over conversations about technology. Digital buildings – which feature a connected infrastructure to bring building systems together via the enterprise network – are moving to the forefront.

With these changes, how can you design your cabling infrastructure – your layer 0 – to support network technology changes? Every structured cabling system is unique, designed to fit a company’s specific needs. Taking the future into account during cabling projects helps maximize your investment while decreasing long-term costs. With correct planning and design, you’ll be ready for future hardware and software upgrades, be able to support increasing numbers of devices joining your network and will be set to accommodate higher-speed Ethernet migrations, such as 40G/100G.

We have gathered our best pieces of advice on how to design your layer 0 to support the future of network technology.

 

1. Abide by Cabling Standards

To provide guidance and best practices for the lifetime of your layer 0, following standards for structured cabling systems allows for the mix of products from different vendors and also helps in future moves, adds and changes:

  • TIA , North American standards for things like telecommunications cabling (copper and fiber), bonding and grounding, and intelligent building cabling systems
  • ISO/IEC, global standard harmonized with TIA networking standards
  • IEEE, which creates Ethernet-based standards for networks and relies on TIA and ISO/IEC layer 0 standards

2. Invest in High-Performance Cables

When your cabling system is designed to be used across multiple generations of hardware, it can remain in place longer while supporting fast and easy hardware upgrades.

Analyze how your business is currently run, as well as any expected business or technology shifts in the years to come. Then match these requirements with the performance characteristics of the cabling systems you’re considering.

Make sure that the category cabling can:

  • Support the full 100m distance per channel
  • Accommodate a tight bend radius inside wall cavities and other tight spaces
  • Support the highest operating temperature rating possible with low DC resistance
  • Maintain excellent transmission performance
  • Be bundled or tightly packed into trays and pathways without performance issues

Most Category 6A cables offer all of the benefits mentioned above, making Category 6A a solid decision that will support the future of network technology.

3. Find a Reputable Warranty

One of the best ways to ensure that your cabling and connectivity solutions will last is to find products that are backed by extensive and impressive warranties (such as a 25-year warranty).

When layer 0 is properly designed and installed, the structured cabling system will support your short-term and long-term needs. A reliable warranty ensures that this happens. For example, with a 25-year warranty, the installed system should meet or exceed industry standards for 25 years, as well as support future standards and protocols. If this isn’t the case, the manufacturer should address the issue.

Read full article

Copyright © 2024 Jaycor International
Engineered by: NJIN Agency
This is a Blog Category Page